PHYSICAL REVIEW E

VOLUME 47, NUMBER 4

APRIL 1993

Power-law scattering in fluids with a nonscalar order parameter

Apollo P. Y. Wong, Pierre Wiltzius, Ronald G. Larson, and Bernard Yurke
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 30 November 1992)

We studied the coarsening behavior of two lyotropic liquid-crystal systems by static light scattering.
The samples were quenched from the isotropic phase into either the nematic phase or a region of coex-
istence between nematic and isotropic phases. In the coexistence region, we observed, in both two and
three dimensions, Porod power-law tails of the scattering intensity. Such a behavior is described by
S(g)~g~'“*V in the limit of large wave vectors g, where S is the scattering intensity, g is the wave vec-
tor, and d is the dimension of the system. In addition, the nematic phases displayed novel power-law
scaling behavior at large ¢, namely, S(g)~q ™% where u=4 in two dimensions and ¥ =6 in three dimen-
sions. These results will be compared to recent theoretical predictions.

PACS number(s): 05.70.Fh, 64.60.—1i, 61.30.—v

In x-ray scattering from porous materials with sharp
interfaces, Debye, Anderson, and Brumberger concluded
as long ago as 1957 that at large wave vector
[g=(47/A)sin(6/2)], the structure factor should fall off
as ¢ ~* [1]. This result was later generalized to include
any binary system with sharp interfaces. In this case, the
structure factor was expected to obey S(g)~gq ¢tV d
being the dimension of the system. This is usually called
Porod’s law [2]; there are ample experimental evidences
confirming this behavior for various fluid and magnet sys-
tems [3,4].

Very recently, Porod’s law was generalized still further
to include systems with complicated order parameters
[5,6]. It was predicted that, for a system with an n-
component vector order parameter, the structure factor
should obey S(q,t)~L (t)°f(gL(t)) where L(t) is a
time-dependent characteristic length and f is a scaling
function that asymptotically approaches f (x)~x ~(¢*"
at large x. Therefore, for a system quenched into its or-
dered phase, the large-g behavior of the structure factor
should be S(g,t)~L (1)%gL (t))"?*") and the usual Po-
rod behavior for a phase-separated binary system with a
scalar order-parameter is recovered as the special case at
n=1.

In the case of binary systems, the sharp interfaces be-
tween the two components are the dominant scatterers
and the characteristic length of the system can then natu-
rally be taken as the characteristic domain size. Howev-
er, for systems with complicated order parameters, the
concepts of domains and domain walls are no longer
applicable. The physical meaning of the characteristic
length scale is not obvious, although one length scale in
the system is related to the defect density. Nevertheless,
the results below agree well with the generalized Porod
form of scaling which indicates that there is such a
characteristic length scale in the nematic regime. More-
over, the sample thickness d* at which the cross over
from two- to three-dimensional behavior occurs is
surprisingly large (on the order of tens or hundreds of
microns) compared to the ‘“molecular” length scales,
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which are only on the order of 100 to 2000 A. Presum-
ably d* is determined by the characteristic length L (¢).
We will argue that in the case of a nematic liquid crystal,
the dominant source of scattering comes from the dis-
clinations, and that the length scales L (z) and d* are
indeed related to the distance between them.

We report in this article static light-scattering results
on two lyotropic liquid-crystalline systems, namely, poly
y-benzyl-glutamate (PBG) in meta-cresol and cesium
perfluoro-octanoate (CsPFO) in heavy water. These two
lyotropes were chosen because of their slow ordering time
scales and their small birefringence in the nematic phase.
The birefringence of a typical thermotropic liquid crystal
is one to three orders of magnitude higher than that of
the above two systems, which makes it difficult to avoid
multiple scattering. Moreover, both the PBG and
CsPFO systems have been well studied, and their phase
diagrams are readily available [7,8]. For the concentra-
tions considered here, both systems have an isotropic
phase at high temperatures, a nematic-isotropic coex-
istence phase in an intermediate temperature range, and
they are pure nematic liquid crystals at yet lower temper-
atures. One difference between the two systems, howev-
er, is that the coexistence region of the PBG solution
spans approximately 40 °C while that of the CsPFO sys-
tem is only 0.5 °C wide.

The polymer chains of PBG form rods with lengths of
approximately 2000 A and diameters of approximately 15
A [8]. On the other hand, the CsPFO molecules form
disklike micelles that are about 40 A thick and 150 A in
diameter [9]. Despite their differences, we show below
that both systems display similar generalized Porod scal-
ing behavior in the nematic phase. This provides strong
evidence that such a scaling behavior is independent of
the molecular details and is a generic property of systems
with complicated order parameters.

We employ a new technique for gathering the static
light-scattering data in which carefully positioned
geometric optical elements project the light scattered be-
tween 0° and 40° onto a charge-coupled-device (CCD)
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camera for recording. The speed of data collection is lim-
ited only by the speed of data communication between
the CCD camera and the controlling computer; in our
system this limit is about 2 s between each snapshot. The
temperature stability is better than 25 mK. The layout of
the equipment is given elsewhere in detail [10]. The di-
mensional crossover behavior of each system was studied
by varying the sample thickness. The PBG system
displays two-dimensional (2D) behavior in a sample of
thickness 50 um, while the CsPFO system shows 2D
behavior for samples thinner than 100 um.

SYNTHETIC POLYPEPTIDE PBLG/PBDG IN m-CRESOL

The chemical formula of PBG is (—NH-—CHR—
CO—),, where R is the side chain given by —(CH,),—
COOCH,—C¢H;s. PBG chains in a heliogenic solvent
such as meta-cresol change from open coils at high tem-
perature to helical rigid rods in the ordered state. Chains
synthesized with left-handed chirality are labeled PBLG;
those with right-handed chirality are called PBDG. Ow-
ing to the helicity, an ordered solution of PBLG or
PBDG alone will be cholesteric. To eliminate the
cholesteric effects, we use a 50-50 racemic mixture of
PBLG and PBDG. We have also studied cholesteric
solutions of PBLG alone in m-cresol and observed no
effect of chirality on the scaling behavior. Only results
for the racemic mixture of PBLG and PBDG are present-
ed here.

The PBLG-PBDG sample was prepared by dissolving
approximately 129% by weight of the polymers with an
average molecular weight of 220 000 in meta-cresol. The
solution was then allowed to sit at room temperature to
allow for phase separation. After about 3 to 4 days, an
interface formed between the polymer-rich nematic phase
and the meta-cresol-rich isotropic phase. The polymer-
rich phase is the heavier of the two. It was extracted
from the solution by pipette as the sample for the mea-
surements. This procedure ensures that the system is a
pure nematic liquid crystal at room temperature, which
gives us a convenient range of temperatures over which
the solution is biphasic. The concentration of the sample
was determined later by solvent evaporation to be
12.2+0.2 wt. %. The isotropic-coexistence transition
temperature is 75 °C and the coexistence-nematic transi-
tion temperature is 35 °C approximately as determined by
monitoring the sample between crossed polarizers. In the
coexistence region, patches of isotropic regions could be
seen dispersed throughout the sample. When the temper-
ature was quenched below the nematic temperature, the
typical Schlieren pattern would appear.

The PBLG-PBDG sample was sealed in a glass vial of
I-mm light path and thermally anchored to a
temperature-controlled block with a Peltier cooler. It
was first annealed at 80 °C, then quenched to 50 °C at a
cooling rate of 1.7 °C/min.

Figure 1 shows the structure factor as a function of the
wave vector on a log-log scale 21 and 160 min after the
quench. The solid line is a fit to the large-g tail of the
21-min result which yields a slope of —4.0%0.3. This is
consistent with the usual 3D phase separation obeying
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FIG. 1. S(q) vs g for 3D PBG in the coexistence region. The
circles are data at 21 min after the quench, and the pluses are
data at 160 min after the quench. The solid line is a fit to 21-
min data with a slope of —4.0 and the dashed line is a fit to
160-min data with a slope of —6.0.

Porod’s law of S(gq)~g ~?*! with d =3. This suggests
that the major source of scattering is from the sharp in-
terfaces between the nematic and isotropic phases. How-
ever, at later times, the large-g portion of the data is well
fitted by the dashed line of slope —6.0£0.3. This behav-
ior is characteristic for a nematic phase, as shown below.
The crossover from a slope of —4 to —6 concurs with
the coarsening of the coexisting isotropic and nematic
domains. This leads to a decrease of the interfacial area
and thus a decrease in the amount of light scattered as
predicted by Porod’s law.

The 3D nematic behavior of PBLG-PBDG was studied
by quenching the sample directly from the isotropic
phase at 80 °C into the nematic phase at 20 °C at 1.7
°C/min. Figure 2 shows a typical result of S(g) versus g
on a log-log scale in the nematic region. According to
the scaling form of the generalized Porod law,
S(g,t)~L(t)gL (t))™*, the data should have an asymp-
totic slope of —u on a log-log scale. The solid line shown
in Fig. 2 is a fit to the large-g part of the data that yields a
slope of —6.0%0.3. If one applies the results for the n-
component vector model u =d +r, then this would sug-
gest that d =3 and n =3. We will discuss this result later
in this article.

The generalized Porod form of the structure factor can
be simplified to S(g,z)~L (1) "¢ 4*™ 5o that all the
time dependence of the structure factor is originated
from the coarsening of the length scale L (¢). Therefore,
by studying the time dependence of the amplitude, it is
possible to obtain information about the coarsening dy-
namics of the length scale. We fitted the structure factor
data to the form of S(g,t)= A4 *q 5, and the time depen-
dence of A* is shown in Fig. 3 in log-log scale. The
values of 4* have been normalized by the maximum
value of 4* in the set. L(t) should grow like ¢!/? ac-
cording to previous studies [12]. This implies that the
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FIG. 2. S(q) vs g for 3D PBG in the nematic region at 53.4 h
after the quench to 20 °C. The solid line is a fit with a slope of
—6.0.

slope on a log-log plot of 4 * versus ¢ should have a slope
of —32. The solid line in Fig. 3 denotes a slope of —1.5.
Although the data beyond 40 h after the quench seem to
approach this power law, it is obvious that the coarsening
kinetics of the PBLG-PBDG system are too slow to make
the asymptotic time dependence accessible to measure-
ments. In the later part of this article, we will describe
experiments on another system where the asymptotic
coarsening of L (¢) is more readily accessible.

The two-dimensional sample was sealed in a commer-
cially available 50-um light path quartz cell with a water
jacket for temperature control. The sample was
quenched from 80 °C into the coexistence region at 60 °C
at a rate of 70 °C/min. The structure factors at 3.1 and
10.8 min after the quench are plotted as a function of ¢ in
Fig. 4. The solid line is a fit to the large-q region of the
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FIG. 3. Amplitude of —6 power-law fit ( 4*) vs time for 3D
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FIG. 4. S(q) vs g for 2D PBLG in the coexistence region.
The pluses are data at 3.1 min after the quench, and the circles
are data at 10.8 min after the quench. The solid line is a fit to
the pluses with a slope of —3.0 and the dashed line is a fit to the
circles with a slope of —4.0.

3.1-min data with a slope of —3.1%0.3. The dashed line
is a fit to the 10.8-min data with a slope of —4.0+0.3.
Similar to the 3D cases, this result indicates that the
scattering is caused by interfaces between coexisting
domains of isotropic and nematic phases at early times.
As the domains coarsen, the interfacial scattering de-
creases and the late-stage g ~* scattering is attributed to
the nematic regions.

The g ~? behavior observed during the coexistence of
nematic and isotropic regions is in agreement with
Porod’s law for d =2. To our knowledge, this is the first
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FIG. 5. S(g) vs g for 2D PBG in the nematic region. The
pluses, circles, and triangles are data at 10.8, 25.0, and 101.6
min after the quench, respectively. The dashed line is a fit to
the pluses with a slope of —6.0. The solid and dotted lines are
fits to the circles and triangles. They both have a slope of —4.0.
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FIG. 6. Amplitude of —4 power-law fit (4 *) vs time for 2D
PBLG. The solid line is a fit with slope —1.1.

experimental verification of this power-law behavior in a
two-dimensional fluid system.

Similar to the 3D case, the 2D nematic behavior of the
sample was studied by directly quenching the sample
from the isotropic into the nematic state at 20 °C. How-
ever, due to the difference in cell configuration, the
quench was at a much faster rate of 70 °C/min. There-
fore, it was possible to observe earlier stages of coarsen-
ing after the quench than possible with the thicker 3D
cell. Figure 5 shows the scattering data for 10.8, 25.0,
and 101.6 min after the quench, respectively. The dashed
line is a fit to the high-q region at 10.8 min after the
quench giving a slope of —6.0%£0.3. At such an early
stage, the characteristic length scale of the system is
small enough compared to the thickness of the sample so
that we observe 3D behavior as evidenced by the g —°
dependence. As the length scale coarsens, the limited
thickness of the sample induces a crossover to 2D behav-
ior as shown by the circles at 25.0 min after the quench.
The solid line is a fit with a slope of —4.0%£0.3. The
dash-dotted line is a fit for the data at an even later time
of 101.6 min. It has also a slope of —4.0x£0.3. If one ap-
plies again the theoretical predictions for the n-
component vector model, a slope of —4 implies d =2 and
n=2.

The time dependence of the length scale can also be ex-
tracted by fitting the structure factors to the form
S(g)~A*q~* A log-log plot of 4* versus time is
shown in Fig. 6. The solid line is a fit with slope
—1.1%£0.2, which is consistent with a length scale grow-
ing with #!/2, in agreement with theory and simulations
[12,13]. It is interesting to note that, in comparison with
the 3D system shown in Fig. 3, the 2D system reaches the
scaling regime approximately ten times faster.

MICELLES OF CsPFO IN HEAVY WATER

The CsPFO used in this study was prepared by precipi-
tating cesium carbonate (CsCOj3) and perfluoro-octanoic
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FIG. 7. Scaled form of 3D CsPFO data in the nematic re-
gion. The pluses, circles, and triangles are data at 235, 501, and
2097 s after the quench, respectively. The solid line is a fit with
slope —6.0.

acid [CF; (CF,)s COOH] in a hexane bath. The CsPFO
precipitate was dried and recrystallized twice from a bath
of a 50-50 mixture of hexane and ethanol by volume. The
CsPFO crystal was dissolved in heavy water according to
a mass ratio of 1:1.857. The solution made was then
filtered with a 0.5-um teflon filter to remove any solid im-
purities. The isotropic-to-coexistence transition tempera-
ture of this solution is at 28 °C and the coexistence-to-
nematic transition temperature is at 27.5 °C.

The 3D nematic behavior of the CsPFO was studied in
a sealed sample cell with 1-mm light path. The sample
was annealed at 30 °C and then quenched into the nemat-
ic phase at 27 °C at a rate of 1.7 °C/min. Typical scatter-
ing data are shown in Fig. 7 in a scaled form of
S (q,t)t ~3/% versus qt'/2. This representation of the data
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FIG. 8. Amplitude of —6 power-law fit (4 *) vs time for 3D
CsPFO. The solid line is a fit with slope —1.4.
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FIG. 9. Scaled form of 2D CsPFO data in the nematic re-
gion. The pluses, circles, and triangles are data at 240, 375, and
785 s after the quench, respectively. The solid line shows the
fitted line at the high-q regime with a slope of —4.0.

follows from the generalized structure factor
S(g,t)~L(1)%f(gL (¢)) with the result that L (¢)~z'/2
The results of 235, 501, and 2097 s after the quench all
collapse onto this scaling curve. According to the gen-
eralized Porod law, the asymptotic slope of such a scaling
curve will be —(d +n). The slope of the solid line shown
is —6.0x0. 3, which is consistent with d =3 and n =3.

Similar to PBLG-PBDG system, the time dependence
of the coarsening of the length scale is shown in Fig. 8 as
an A* versus time plot. The slope of the straight line is
—1.4+0.2, confirming the r!’? growth of the length
scale.

To study the 2D crossover behavior of the CsPFO, a
wedgelike sealed cell was built with commercial grade
quartz. The area of the cell accessible to light-scattering
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FIG. 10. Amplitude of —4 power-law fit (4 *) vs time for
2D CsPFO. The solid line is a fit with slope —1.1.
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experiments allowed us to study the sample at thicknesses
varying from 95 to 400 um. The sample was found to
display 2D behavior at a thickness of 100 um and 3D be-
havior at thicknesses larger than 250 um.

Figure 9 shows the scattering results at 100 um at 240,
375, and 785 s after the quench in the scaled form of
S(g)t ! versus gt "1/2. As in the 3D case, the asymptotic
slope of such a scaled curve is shown by the solid line, but
in this 2D case the slope is —4.0+0.3, which is con-
sistent with d =2 and n =2.

The time dependence of the length scale growth is
shown in Fig. 10 in the form of 4* versus time. The
solid line is a fit with a slope of —1.1+0.2. This is again
consistent with the ¢'/? growth law.

DISCUSSION AND CONCLUSIONS

The two systems studied here are very different in
many respects. PBLG-PBDG forms long rods while
CsPFO forms disklike micelles. The width of the region
of coexistence between isotropic and nematic phases
spans almost 40 °C for PBLG, while it is only 0.5 °C wide
for CsPFO. Moreover, the time scales at which the sys-
tems enter their scaling regime are very different: in the
PBLG-PBDG system, the scaling regime occurs tens of
hours after quenching while for CsPFO it starts at hun-
dreds of seconds after the quench. However, remarkably,
in spite of these differences, both systems display similar
scaling behavior of the coarsening after they have been
quenched from the isotropic into the nematic region of
the phase diagram. This leads us to believe that our re-
sults are generic to quenched liquid-crystalline systems.
When domains of isotropic and nematic material coexist
we observe ¢ ““T1 power-law tails for large values of g
in both three and two dimensions. This has been well un-
derstood as originating from the scattering of the domain
walls. To our knowledge, the experiments in two dimen-
sions are the first to show this behavior. When viewed
under crossed polarizers, the domains are large compared
to the cell thickness (50 and 100 pum, respectively) making
them effectively two dimensional.

Both systems show S (g)~g¢ ¢ in three dimensions and
g ~*in two dimensions when quenched from the isotropic
into the nematic region of the phase diagram. If we take
the theoretical predictions [5,6] based on the n-vector
model at face value our experiments suggest that » =3 in
three dimensions and » =2 in two dimensions. It is im-
portant to realize, however, that for a nematic liquid
crystal the order parameter is actually a traceless
second-rank tensor. There is no direct mapping of a ten-
sor order parameter onto a vector model. It is natural at
this point to ask about the dominant source of scattering
and the nature of the lengths scales involved. Since a
nematic phase has continuous symmetry there are no
domain walls in the ordered state that could be a source
of scattering. The only singularities present are defects
which can be point or line defects and textures. It is
commonly accepted that the dominant defects in nemat-
ics are half-integer disclinations. In a recent series of ex-
periments [14] small-angle light-scattering experiments
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were performed on a polymer liquid crystal. The authors
report two observations that we cannot confirm. First,
they claim that the depolarized scattering pattern has
four fold symmetry. Second, the patterns have a max-
imum at a finite value of g. Our scattering patterns are
always azimuthally isotropic for nematic samples. For
more highly ordered phases such as smectic ones, we do
observe twofold and fourfold symmetries. The second
claim, that the scattering patterns have a maximum at a
finite value of g, is explained [14] using a model of in-
teracting disclinations, where the length scale reflected by
the maximum in S(q) is given by an average distance be-
tween disclinations. We do agree with the idea that the
dominant length scale in the system is related to the dis-
tance between disclinations and that the growth of this
length scale is due to annihilation of two disclinations of
opposite sign. This length scale is most certainly much
larger than the “molecular” sizes (length of the PBLG
rods or size of the CsPFO micelle) and can easily grow to
hundreds of micrometers. This explains why we were
able to observe crossover between two- and three-
dimensional behavior at these large cell thicknesses.
Since we do not observe a peaked structure factor, we
must conclude that in our case the diclinations are not
correlated and do not have a characteristic distance.

We calculated the scattering of disks with s =1 and 1
disclinations and the associated director field based on
formulas derived in Ref. [14]. We found that the scatter-
ing from such disks has indeed a power-law tail falling off
with a slope of —4. This is what we observed for the
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two-dimensional nematic liquid crystals and indicates
that the dominant defects here are stringlike defects
stretching from one glass window to the opposite. The
defects induce director fields akin to the 2D XY model,
which is formally described by a two-vector model in two
dimensions. In the calculations the size of the disks was
irrelevant. The large-q behavior was caused solely by the
scattering from the director field in the vicinity of the dis-
clination.

Unfortunately the formulas for three-dimensional dis-
clinations are not available. By analogy, however, we
must conclude that the dominant source of scattering is
also in this case the disclinations. It would be natural to
conclude that this should be akin to the 3D XY model
with n =2, which is in contradiction to our experimental
results » =3. We must reiterate, however, that to the
best of our knowledge there is no rigorous derivation of
the value of n for a nematic phase. Only heuristic argu-
ments [11] have been recently proposed that lend
justification for n =3 for a nematic liquid crystal. A full
tensor theory is awaited to which our data could be com-
pared.
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